

# **HL61C** series Low Power Voltage Detector

#### **Features**

- Lowpowerconsumption
- Low temperature coefficient
- Built-in hysteresis characteristic
- High input voltage (up to 8V)
- Output voltage accuracy:

 $\pm 2\%$ @VDET $\geqslant$ 2.5mV

 $\pm$ 50mV@VDET<2.5mV

SOT23-3 and SOT23 package

### **Applications**

- Battery checkers
- Level selectors
- Power failure detectors
- Microcomputer reset
- Battery memory backup
- Non-volatile RAM signal storage protectors

### **General Description**

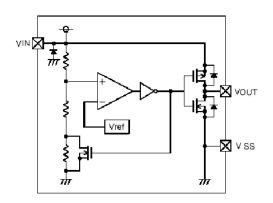
terminal low power voltage detectors implemented in CMOS technology. Each voltage detector in the series detects a particular fixed voltage ranging from 0.9V to 5.0V. The voltage detectors consist of detectors, these devices can be used with external a high-precision and low power consumption components to detect user specified threshold standard voltage source as well as a comparator, voltages.

The HL61C series devices are a set of three hysteresis circuit, and an output driver (CMOS inverter or NMOS open drain). CMOS technology ensures low power consumption.

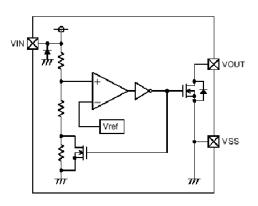
Although designed primarily as fixed voltage

#### **Selection Table**

| Part No.     | Det. Voltage | Hys. Width | Output | Tolerance            | Package |
|--------------|--------------|------------|--------|----------------------|---------|
| HL61CC0902MR | 0.9V         | 4%         | CMOS   | $\pm 50 \text{mV}$   |         |
| HL61CN0902MR | 0.9V         | 4%         | NMOS   | $\pm 50 \mathrm{mV}$ |         |
| HL61CC1002MR | 1.0V         | 4%         | CMOS   | ±50mV                |         |
| HL61CN1002MR | 1.0V         | 4%         | NMOS   | $\pm 50 \mathrm{mV}$ |         |
|              | •••          |            | •••    |                      |         |
| HL61CC2402MR | 2.4V         | 4%         | CMOS   | $\pm 50 \text{mV}$   | SOT23-3 |
| HL61CN2402MR | 2.4V         | 4%         | NMOS   | $\pm 50 \text{mV}$   | SOT23   |
| HL61CC2502MR | 2.5V         | 4%         | CMOS   | ±2%                  |         |
| HL61CN2502MR | 2.5V         | 4%         | NMOS   | <u>+2</u> %          |         |
| •••          | •••          | • • •      | •••    | <u>+2</u> %          |         |
| HL61CC5002MR | 5.0V         | 4%         | CMOS   | <u>+2</u> %          |         |
| HL61CN5002MR | 5.0V         | 4%         | NMOS   | <u>+2</u> %          |         |

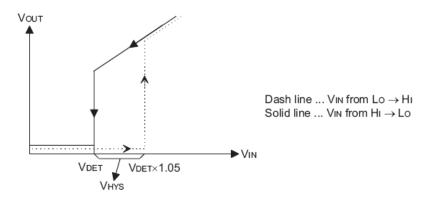

## **Order Information**

HL61C1234567

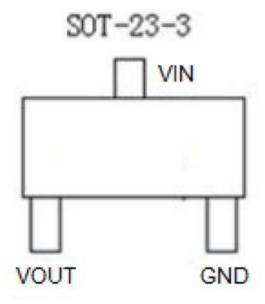

| Designator | Symbol | Description              |
|------------|--------|--------------------------|
| (1)        | С      | CMOS output              |
| (1)        | N      | NMOS output              |
| 23         | VOUT   | Output Voltage(0.9~5.0V) |
| 45         | 02     | Standard                 |
| 6          | M      | Package:SOT23-3          |
| 0          | N      | Package:SOT23            |
| 7          | R      | RoHS/Pb Free             |
|            | G      | Halogen Free             |

## **Block Diagram**

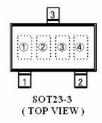
## (1) CMOS Output




### (2) N-ch Open Drain Output




## **Output Table & Curve**


| $V_{DD}$ | $V_{DD}>V_{DET}(+)$ | V <sub>DD</sub> ≪V <sub>DET</sub> (-) |
|----------|---------------------|---------------------------------------|
| Vout     | Hi-Z                | V <sub>SS</sub>                       |



## Pin Assignment



## Marking Rule



# ① Represents integer of detect voltage and CMOS Output

| MARK | CONFIGURATION | VOLTAGE (V) |
|------|---------------|-------------|
| А    | CMOS          | 0.X         |
| В    | CMOS          | 1.X         |
| С    | CMOS          | 2.X         |
| D    | CMOS          | 3.X         |
| Е    | CMOS          | 4.X         |
| F    | CMOS          | 5.X         |
| H    | CMOS          | 6.X         |

#### N-Channel Open Drain Output

| MARK | CONFIGURATION | VOLTAGE (V) |
|------|---------------|-------------|
| K    | N-ch          | 0.X         |
| L    | N-ch          | 1.X         |
| М    | N-ch          | 2.X         |
| N    | N-ch          | 3.X         |
| Р    | N-ch          | 4.X         |
| R    | N-ch          | 5.X         |
| S    | N-ch          | 6.X         |

#### @Represents decimal number of detect voltage

| MARK | VOLTAGE (V) | MARK | VOLTAGE (V) |
|------|-------------|------|-------------|
| 0    | X.0         | 5    | X.5         |
| 1    | X.1         | 6    | X.6         |
| 2    | X.2         | 7    | X.7         |
| 3    | X.3         | 8    | X.8         |
| 4    | X.4         | 9    | X.9         |

#### ③ Represents accuracy

| MARK | ACCURACY |
|------|----------|
| 3    | 2%       |
| 1    | 1%       |

(4) Represents production lot number Based on the internal standard. (G, I, J, O, Q, W excepted)

### **Absolute Maximum Ratings**

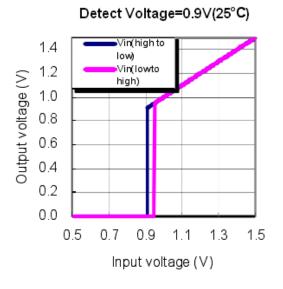
Supply Voltage ......-0.3 V to 8 V Storage Temperature .....-50  $^{\circ}$ C to 125  $^{\circ}$ C Operating Temperature .....-40  $^{\circ}$ C to 85  $^{\circ}$ C

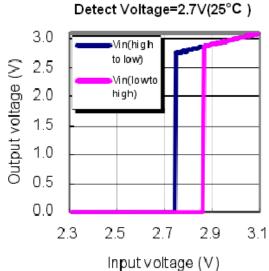
Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

### **Thermal Information**

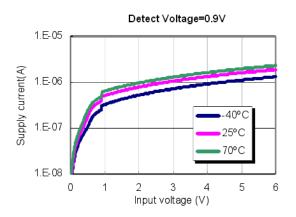
| Symbol         | Parameter                                                                          | Package | Max. | Unit |
|----------------|------------------------------------------------------------------------------------|---------|------|------|
| θ ЈА           | Thermal Resistance (Junction to Ambient) (Assume no ambient airflow, no heat sink) | SOT23-3 | 500  | °C/W |
| P <sub>D</sub> | Power Dissipation                                                                  | SOT23-3 | 0.20 | W    |

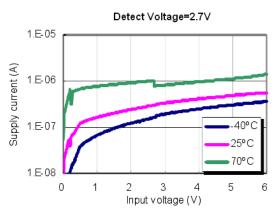
Note:  $P_D$  is measured at  $Ta = 25 ^{\circ}C$ 


#### **Electrical Characteristics**


 $V_{DF}=0.8V\sim5.0V$  Ta=25 °C

| Symbol                                    | Parameter                  | Te       | est Conditions                                                                      | Min.                   | Тур.                  | Max.                   | Unit   |
|-------------------------------------------|----------------------------|----------|-------------------------------------------------------------------------------------|------------------------|-----------------------|------------------------|--------|
|                                           | Datastian Valtaga          | V        | <sub>DF</sub> =0.9V~2.4V                                                            | V <sub>DET</sub> -0.05 | $V_{DET}$             | V <sub>DET</sub> +0.05 | V      |
| V <sub>DET</sub>                          | Detection Voltage          | V        | <sub>DF</sub> =2.5V~5.0V                                                            | V <sub>DET</sub> *0.98 | $V_{DET}$             | V <sub>DET</sub> *1.02 | V      |
| V <sub>HYS</sub>                          | Hysteresis Width           |          | -                                                                                   | 0.02*V <sub>DET</sub>  | 0.05*V <sub>DET</sub> | 0.10*V <sub>DET</sub>  | V      |
|                                           |                            | Vin=1.5V |                                                                                     | -                      | 0.7                   | 2.3                    | μА     |
|                                           |                            | Vin=2.0V |                                                                                     | -                      | 0.8                   | 2.7                    |        |
| $I_{DD}$                                  | Operating Current          | Vin=3.0V |                                                                                     | -                      | 0.9                   | 3.0                    |        |
|                                           |                            | Vin=4.0V |                                                                                     | -                      | 1.0                   | 3.2                    |        |
|                                           |                            |          | Vin=5.0V                                                                            | -                      | 1.1                   | 3.6                    |        |
| $V_{DD}$                                  | Operating Voltage          | ı        | -                                                                                   | 0.7                    | •                     | 10                     | >      |
| l <sub>OL</sub>                           | Output Sink Current        | 2V       | V <sub>OUT</sub> =0.2V                                                              | 0.5                    | 1                     | -                      | mA     |
| $\frac{\Delta V_{DET}}{V_{DF}\Delta T_a}$ | Temperature<br>Coefficient | -        | -25℃<br><ta<125℃< td=""><td>-</td><td>±100</td><td>-</td><td>ppm/°C</td></ta<125℃<> | -                      | ±100                  | -                      | ppm/°C |


## **Typical Performance Characteristics**

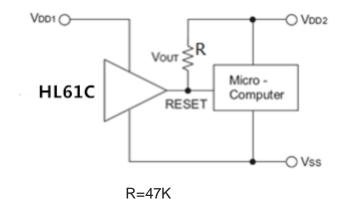

## (1) Output Voltage vs Input voltage



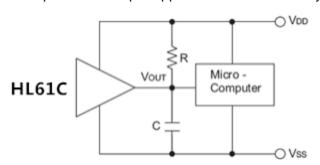


(2) Supply Current vs. Input Voltage



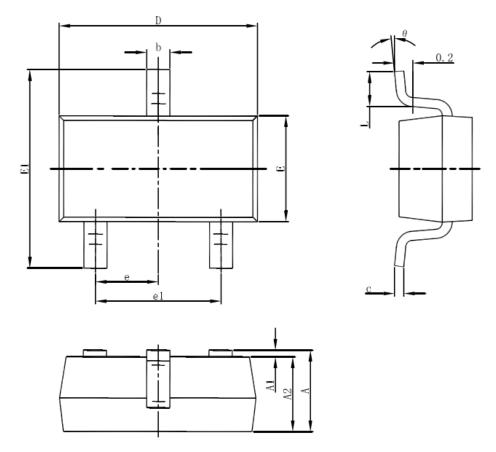



## **Application Circuits**


### **Microcomputer Reset Circuit**

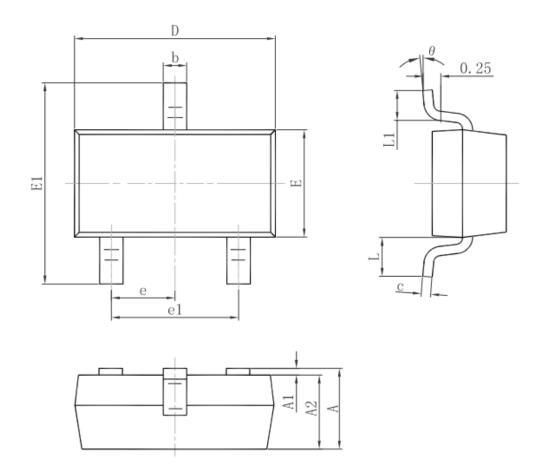
Normally a reset circuit is required to protect the microcomputer system from malfunctions due to power line interruptions. The following examples show how different output configurations perform a reset function in various systems.

NMOS open drain output application for separate power supply




NMOS open drain output application with R-C delay




# Package Information

# 3-pin SOT23-3 Outline Dimensions



| Symbol | Dimensions In | n Millimeters    | Dimensions | In Inches |  |
|--------|---------------|------------------|------------|-----------|--|
| Symbol | Min           | Max              | Min        | Max       |  |
| Α      | 1.050         | 1.250            | 0.041      | 0.049     |  |
| A1     | 0.000         | 0.100            | 0.000      | 0.004     |  |
| A2     | 1.050         | 1.150            | 0.041      | 0.045     |  |
| b      | 0.300         | 0.500            | 0.012      | 0.020     |  |
| С      | 0.100         | 0.200            | 0.004      | 0.008     |  |
| D      | 2.820         | 3.020            | 0.111      | 0.119     |  |
| E      | 1.500         | 1.700            | 0.059      | 0.067     |  |
| E1     | 2.650         | 2.950            | 0.104      | 0.116     |  |
| е      | 0.950         | 0.950(BSC) 0.037 |            | (BSC)     |  |
| e1     | 1.800         | 2.000            | 0.071      | 0.079     |  |
| Ĺ      | 0.300         | 0.600            | 0.012      | 0.024     |  |
| θ      | 0°            | 8°               | 0°         | 8°        |  |

## 3-pin SOT23 Outline Dimensions



| Symbol | Dimensions | In Millimeters    | Dimension | s In Inches |
|--------|------------|-------------------|-----------|-------------|
|        | Min.       | Max.              | Min.      | Max.        |
| Α      | 0.900      | 1.150             | 0.035     | 0.045       |
| A1     | 0.000      | 0.100             | 0.000     | 0.004       |
| A2     | 0.900      | 1.050             | 0.035     | 0.041       |
| b      | 0.300      | 0.500             | 0.012     | 0.020       |
| С      | 0.080      | 0.150             | 0.003     | 0.006       |
| D      | 2.800      | 3.000             | 0.110     | 0.118       |
| E      | 1.200      | 1.400             | 0.047     | 0.055       |
| E1     | 2.250      | 2.550             | 0.089     | 0.100       |
| е      | 0.950 TYP. |                   | 0.037     | TYP.        |
| e1     | 1.800      | 2.000             | 0.071     | 0.079       |
| L      | 0.550      | 0 REF. 0.022 REF. |           | REF.        |
| L1     | 0.300      | 0.500             | 0.012     | 0.020       |
| θ      | 0°         | 8°                | 0°        | 8°          |